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Introduction

The operator-equivalent point-charge method used to derive cnergy expressions
for specified crystal-field states in the cnalysis of electronic absorption spectra
‘is described ip detail in Hutchings (1964). Hutchings includes the-necessary
fornulas to derive the crystal-field potential and to rewrite it in terms of the
operator equivalents. Extensive tables are presented that contain the various
matrix elements of the operator equivalents for coupled wavefunctions so that
ekpréssions fof the crystal-field states can be determined. The‘opcrator—
equivalent method, as applied to the spectra of Fe2+ in the M(2) site of ortho-
pyroxene byﬂGoldman and Rossman (1976), will now be outlined. It is hoped that
_the reader will gain sufficient familiarity with the proceduraliaspects of this
method so that ‘t could be applied to spectra arising from a variety of coor-

dination geometries.

THE CRYSTAL-FIELD POTENTIAL

The general expression for the crystal-field potential in terms of spherical

¢

harmonics at point (c,3,¢) s
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Therefore, Y;mvresults from a summation of harmonic contributions from all j point

charges in the coordination site.

Figure 1 representsnthe idealized geometry of a C2V coordination site con-
taining a dihedral two-fold rotation axis. Z coincides with the two-fold axis of
the site and the two mirror planes are located in XZ and YZ aad are mutually
éfthogonal. In equation 2, 5 is the angular measure of point j from Z and ¢ is
the angular measure of point j from X about Z. Henre, points 1 through 6 have
(r,8,¢) coordinates (aj,81,7), (a1,91,0), (as,8,,7m) (a2,85,0), (ag,ﬁg,%) and

(63,63,%ﬂ), respectively.

The derivation of the YS spherical harmonic contribution to the crystal-
field potential serves to illustrate the procedure to derive the remaining terms.
Given that (Hutchings, 1964, table 3)
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and assﬁming that each point contributes the same charge, q, equation 2 over all

six points in figure 1 becomes
Y’\: _ (= 2 - 3Cb$28.‘l
fa =
L 5 qj aja 3
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Substituting Yéo into equation 1, the contribution to the potential from Yi is
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o In this way, the remaining terms in the potential are derived. Excluding harmonic
: e 0 vi2 46
‘terms with n >4 (Figgis, 1966, p. 32), contributions from the Yz:_yz s Th,

+n
—

+ ,
Yy and YE” harmonic te =ws occur in this potential.
The potential is now rewritten in terms of the operator equivclents. The

operators that are formed, which operate on the angular part of the wavefunctions,

MV e

possess the same transformation properties under rotation as the potential.
Hence, they allow for the matrix elements of the crystal-field potential between
coupled wavefunctions that are specified by one particular value of angular

i - momerntum (LL?)_to be evaluated. Rewriting Y% in cartesian coordinates brings

o . 1 (.5. ?lé'rz.
Y2 7 % \7 2

In operator equivalents, Yg becomes (Hutchings, 1964, table 8)
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where o is a constnntlmultiplicative factor which is equal to -

ions such as Fe2+ (Hutchings, 1964, table 7), and Og is the standard notation

e . .
for the operator equivalent of Y. Substituting equation 5 into equation 4

brings

1 3cos?8.-1)7 .2 :
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Continuing for the remaining terms, the potential is then entirely rewritten using

the operator equivalents.

! d In CZv symmetry with Z as a dihedral axis, three electronic transitions are

allowed; Aj»Aj, A1»Bp anad Ay+B). Hence, spectral analysis provides three .
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parameters whereas five coefficients occur in the potential. After subtracting
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the octahedral terms from‘the potential in order to solve for A(=10 Dq), the

five coefficients that still remain are reduced to two by rewriting each aj in
| ‘

‘

terms of 3, the average metal-ligand bond distance (or any other specified

: 0
distance). For 0, equation 6 becomes
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Since ajy=ajy=ajy=3a, C;1=0,=+ 93=Ug=i£3 and 85=66=§-1n octahedral geometry (figure 1),

: ' : IO IS . oct :
the summation in equation 6 over all six points is zero, and v,g5 = 0. tence,

there are no octahedral contributions to be extracted from vop and the summation
in equation 7 within the brackets results in a numerical value fer the A coeffi-
cient used in Goldman and Rossman (1976). Similarly, the remaining terms in

the potential are:
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where the numerical valués of the bracketed terms in equations 8 through 11 are

the B through E céefficicnts in Goldman and Rossman (1976), respectively.
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‘and a

Certain terms ﬂlﬁ:occnr in the general expressions for the B, D and E coefficients

are zero in sz symmetry and these terms have been omitted.

Because of the presence of mirror planes in XZ and YZ in Figure 1, bond

distances from the metar ion to points 1 and 2 are identical (as are the distances
\ ,

¢

to points 3 and 4, and 5 and 6). However, the crystallographic point-group

symnetry of the M(2) coordinatioﬁ site in orthopyroxene is C1 in which there are

six unequal metal—oxyge@ bond distances. To conform to a CZv symmetry with Z
| -

along the biééctqr of thé 6(3)-M(2)—O(6) angle, the averages of the bond lengths
from M(2) to O(6) and O(;), 0(1) and 0(4), and 0(Z) and 0(5) are used as al,a2
3‘which have values of 2.4623, 2.1474 and 2.0523, respectively. 3 has a

value of 2.220& (Ghose, 1965). Because the 0(6)-M(2)-0(3) angle is 72.2° and

the 0(1)-M(2)-0(4) angle is 83°, 6; and 6, (Figure 1) are 36.1° and 138.5°,

‘respectively. 03 is set at 90°. Using these values for & and 3 and the values

J

- for ?j shown in Figure 1, the coefficients A,B,C,D and E, calculated from equations

7 through 11, are 0.38066, -1.05474, 14.5148, 0.48616 and 0.56845, respectively.

The sz potential is written by defining two parameters

N S Ke SR E -1 b
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b

and substituting A,B,C,D and E for the bracketed terms In equations 7 through 11,

respectively. }The potential, V, consists of an octahedral portion, and

M [% 0d + Bog] + N [g 0f + 5p02 + 2 Eoﬁ} (12)

Hence, there ara(three parameters, A, M and ¥, to be fitted from the spectra.
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d - ORBITAL WAVEFUNCTIONS

Using the octahedral form of the sz potential

i
i
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combinations of the d orbitals that transform as Al,Az,BZ,Bl and
' bl

| ;

the five linear

Al in the C2v

symmetrngroup are found. This involves determining the elements
I :
of the 5 x5 ma#rix of d orbitals. For instance, neglecting the common factor

OCt{Yg) is found using Hutchings (1964,

(5/4m)%, the matrix element for (YJ|V
| ‘ £ e e
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table 9). 1In this case, L=Z and LZ=U. Letting :gﬁg* = §dn YT 2 tuves 2o
Hutchings (1964) indicates that
gl 0 = 1 = o)
T 6¢0log]0) = ( 360 (72) = - 28

5
%6(0!05]0) = (8 (0) =0
3_colotlo) = (2 -
12c(o[ok{o) = (3790 =0
oct”’ '
so that the matrix element for (Yglv §Yg} is -2¢& . Upon determining the
remaining matrix elements, it is found that YJ, Y3 and Y;% and Y} and ¥3! mix.

The appropriate linear combinations are then determined in the conventional

manner (Ballhausen, 1962) and the following wavefunctions are obtained:
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which transform as Al B1 B2 A2 and Al’ respectively, in CZv symmetry. Applying
oct”’

v to the above wavefunctions remembering that & = 0.754 (Figgis, 1966, page 35),
i ; of 5 is — Q.44

the energy of dy2 and dxz is 0.6A and the energy of dxy’ dyz and de_zz is 0.4&4

Therefore, dyz (Al) and dxz(Bl) arise from the splitting of the octahedral EEE

state of Fe?* as is indicated in the correlation tables for sz(CZ”) in Wilson,

Decius and Cross (1955).

ENERGY EXPRESSIONS
The energy expressions for the five d wavefunctions in sz symmetry are found

by applying tﬁe sz potential in equation 12 to each one of the wavefunctions

using table 9 %i Hutchings to evaluate the matrix elements. The expression for
the A2 state is
L w2 o y|viyd -2
Eas At el e o) )
=3l wilvva?)

= @2|v|y;?) - wRlvivd) .
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Taking the first term

and the second term

; ’ )
and remembering that {(d lVOCtid ) = =0.44,
Xy xy

A

2

‘state is

A2 25 - 2oy - 2
(ZIMBO%IZ:‘) = MB(0) = 0
-<2£l§15‘- 081?—2> =20 =0
-(25!»130%[—2) = =MB(0) = 0

| ,
@3 oﬂm = Xa
(2|58p02]|2) = 5ND(0)
¢ l%imzoijlz) = %5—:"5(0)
R OSI.—2> - ¥
-QlSNDO%[fZ) = 53D(0)
-(21—2—5—:‘:‘505;[-2) = —2—5—>IE(12)

z\lm + 28C - 105NE - 0.42
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-105KE

the entire energy expression for the

S
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which is given in Goldman and Rossman (1976, table 2). In this way, energy
“expressions for .the femaining four states are determined.
? .

Since the two Al states have the same transformational symmetry, they can

mutually interact.  To account for this configurational interaction, a 2x2 matrix

is formed for and d . The two eigenvalues of this configuration interaction
T g2 x2-722 .

matrix are the resulting energies of the two Al states. The energy expression for

the two Al\states derived from the configuration interaction matrix is

t
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where the (+) combination is the energy of the upper Al state derived from Eg(oh)'
" 'y

The energy expression for the Al ground state is then subtracted from the

1,Bl and B2 states. The three resulting expressions

are equivdlent to the experimentally determined energies for the A1+Al, Af‘B1

expressions for the excited A

; , : 2+
and Al+B2 electronic transitions of Fe in C2V symmetry. Hence, there are three

equations containing three unknowns,4, M and N, and the point-charge model can be

solved exactly.

4

PRI




REFERENCES

Ballhausen, C. J. (1962) Introduction to Ligand Field Theory. McGraw Hill,
7 v

New York.

’Figgis, B. N. (1966) Introduction to Ligand Fields. Interscience Publishers.

Si,0

7
< O

n7s ¢
v

ve o .

Ghose, S. (l96§b Mg2+—Fe2+ order in an orthopyroxene,.}‘lgn OBFe,
‘ Z. Kristqi{g&g. 122, 81-99.
Goldman, D. S. and G. R. Rossman (1976) The spectra of orthopyroxene revisited:
the splitting of #he?lzg ground state. Amer. Mineral. 6l.

Hutchings, M. T. (1964) Point-charge calculations of energy levels of magnetic

ions in crjstalline electric fields. Solid State Phys. 16, 227-273.

Wilson, E. B., j. C. Decius and P. C. Cross (1955) Molecular Vibrations,

McGraw Hill, New York.

o g




Figure 1.

Idezlized CZQ coordination site in which Z, the two-fold
rotation axis, is a dihedral axis. Points 1 through 6 have
(r,8,$) coordinates of (al,el,n), (al,al,o), (az,sz,:),

(32,02;0), (a3,83,n/2) and (a3,03,33/2), respectively.
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